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Using the results of a configuration interaction calculation reported by Rosen- 
berg and Shavitt, we derive an approximation to the correlation energy which 
may be associated with the sum to infinite order of all linked diagrams involving 
singly- and doubly-excited states. This result is compared with that obtained by 
calculation of the energy through third-order. The fourth-order linked diagrams 
involving quadruply-excited states are computed. It is shown that there is a 
considerable degree of cancellation between the fourth-order linked diagram 
energy terms involving doubly-excited intermediate states only and those which 
contain quadruply-excited states. 
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I. Introduction 

Brueckner [1 ] first pointed out the importance of ensuring that expressions for the 
correlation energy of a many-electron system depend linearly on the number of 
electrons, N, in the system. He demonstrated that certain terms in the Rayleigh- 
Schr6dinger perturbation expansion for the correlation energy depend on N 2, 
N 3 , . . . ,  but that the series could be rearranged such that these unphysical terms 
mutually cancel in each order. This result was generalized to all orders by 
Goldstone [2] giving the well known linked diagram expansion of many-body 
perturbation theory [3]. 

It has been demonstrated [4-8] that the many-body perturbation theory, when taken 
through third-order in the energy, yields results which compare favourably with 
other methods, such as configuration interaction, for small closed-shell systems. 
Moreover, a previous treatment [7] of the water molecule has examined the extent 
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to which a consistent set of equilibrium structural parameters can be determined 
from perturbative energy calculations through third-order. As with other finite 
basis set methods, the perturbative approach has been found to depend critically 
on the degree of completeness of the basis as measured by its size and quality of 
composition. 

For systems consisting of more than a few (~  4) electrons the method of configura- 
tion interaction is often limited to all singly- and doubly-excited configurations. 
It is well known that this truncation of the configuration interaction expansion 
leads to various unphysical terms, having an incorrect dependence on the number 
of electrons, which would be removed by including more highly-excited configura- 
tions. In the perturbative analysis of the configuration interaction energy, this 
difficulty first arises at fourth-order where unlinked diagrams involving only 
doubly-excited configurations are cancelled by unlinked diagrams involving 
quadruply-excited states. These fourth-order unlinked diagrams are shown in 
Fig. 1. However, we can easily correct limited configuration interaction results for 

ql 

q2 
Fig. I. Fourth-order unlinked diagrams involving quadruply-excited 
intermediate states 

this effect and also for a class of higher-order unlinked diagrams. Thus, we obtain 
the sum of all linked diagrams involving only limited (usually singles and doubles) 
excitation to infinite order [9] plus some residual unlinked terms of sixth- and 
higher-order. For small closed-shell systems, most of the electron correlation 
energy may be accounted for by considering excitations which are doubly-excited 
with respect to the reference function. This is explained by the fact that the exclu- 
sion principle prevents the close approach of more than two electrons. 

After doubly-excited configurations, the next most important component of the 
correlation energy for small closed-shell systems is expected to be that associated 
with configurations which are quadruply-excited with respect to the Hartree-Fock 
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reference function. These terms arise for the first time in the perturbation expansion 
in second-order in the wavefunction and fourth-order in the energy. All second- 
order wavefunction terms involving quadruply-excited configurations are of the 
disconnected cluster type [10-11]. Some fourth-order energy diagrams involving 
quadruply-excited states are linked; some are unlinked. The unlinked diagrams in 
the perturbation series cancel, as they must because of their unphysical nature. 
The linked diagrams are shown in Fig. 2. 

AQ BQ CQ 

DQ E Q FQ GQ 

Fig. 2. Fourth-order linked diagrams involving quadruply-excited intermediate states 

In this work, we report calcuIations of the correlation energy of the ground state 
of the water molecule through third-order in the energy. We use the basis set of 
39 Slater exponential functions employed by Rosenberg and Shavitt [12] in their 
configuration interaction study. From the configuration interaction calculation, 
which included all singly- and doubly-excited configurations we derive the energy 
associated with all linked diagrams involving singly- and doubly-excited states to 
all orders in perturbation theory. The components of the correlation energy 
corresponding to the fourth-order diagrams involving quadruply-excited states are 
rigorously evaluated. These energy contributions are compared with higher order 
terms arising strictly from doubly-excited configurations [13]. (The present results 
also provide a confirmation of the corrections appearing in the erratum of Bartlett 
and Shavitt [13].) 

Theoretical aspects of the present work are given in the following section. In 
Sect. 3, we present our results, while in the final section we discuss their significance. 

2. Theoretical Aspects 

The diagrammatic Rayleigh-Schr6dinger perturbation expansion through third- 
order in the energy forms the basis of a non-iterative and computationally efficient 
algorithm for electronic structure calculations. Details of the present formulation 
within the algebraic approximation have been given elsewhere [4, 14]. 
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Following our previous work [4], two different perturbation expansions are in- 
vestigated corresponding to two choices of the reference Hamiltonian, the "mode l "  
and the "shif ted"  schemes. In the model scheme the Hartree-Fock operator is 
used as a reference Hamiltonian. In the shifted expansion, the reference Hamilton- 
ian is defined by 

[g) (KIo@IK) <K[ (1) 
K 

where ~ is the total Hamiltonian and I K)  denotes an N-electron determinant. 
In addition to the sum of the energy components through third-order, we also 
construct [2/1] Pad6 approximants [15] and upper bounds to the energy. Com- 
ponents of  the correlation energy will be denoted by E~(A) where a denotes the 
order of perturbation, b the number of bodies involved (i.e. the number of hole 
lines) and A, when necessary, denotes the particular diagram. 

For the model perturbation expansion we evaluate the fourth-order energy dia- 
grams involving quadruply-excited states. The energy expressions corresponding 
to such diagrams may be put in the form [16] 

~.f~ g. (2) 
/t 

where f ,  and g, are "second-order"  quantities which differ only in their denomi- 
nators./x denotes a compound index. It should be noted that some of the terms in 
this expansion violate the exclusion principle, but these are cancelled by similar 
terms which correspond to unlinked diagrams. 

The configuration interaction calculation of Rosenberg and Shavitt [12] may be 
corrected for certain unphysical unlinked diagrams. The correction to be used here 
is [1, 9, 17]. 

1 C~ E ~  (3) 
Co 

where Co is the coefficient of the root configuration in the configuration inter- 
action expansion and Esz) the correlation energy corresponding to such a calculation 
involving all singly- and doubly-excited functions. The total correlation energy for 
linked diagrams associated with singly- and doubly-excited states is therefore 

1 
C-~o EsD �9 

The basis set employed in this work is that of Rosenberg and Shavitt which is 
based on that of Dunning et al. [18]. Integrals over the 39 Slater basis functions 
are evaluated by the programs of Stevens [19] as adapted for the ATMOL3 
programs by Saunders [20]. 

3. Results  

The results of the perturbative calculations through third-order in the energy are 
given in Table 1. The individual diagrammatic third-order contributions are in 
general larger in magnitude for the model scheme than the corresponding energy 
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Table 1. Components of the correlation 
energy for the water molecule through 
third-order ~ 

Reference operator 

Energy quantity ~ model o~ shifted 

In Hartree. 

E2 -0.28178 -0.34361 
E3(pp) + 0.04990 + 0.03699 
E~(hp) - 0.14003 - 0.03846 
E~(hp) + 0.04244 + 0.07158 
Ea(hp) - 0.09759 + 0.03312 
E~(hh) + 0.04094 0.0 
E~(hh) + 0.00014 + 0.00016 
E~(hh)' + 0.00336 + 0.00517 
E3(hh) + 0.04444 + 0.00533 
Ea - 0.00325 + 0.07545 
E2 + E3 --0.28503 -0.26816 
E[2/1 ] -- 0.28507 - 0.28174 
~, opt + 0.95555 + 0.77048 
E opt - 0.26926 - 0.26475 

contribution in the shifted expansion. Nevertheless, the total third-order energy in 
the model scheme is an order of magnitude smaller than Es in the shifted scheme. 
The formation of the [2/1] Pad6 approximant brings the two third-order results 
within 0.0033 Hartrees. As in previously reported calculations [4-8] the formation 
of the Pad6 approximant leads to little change in the model energy. The programs 
used to perform these calculations has been described elsewhere [14]. The present 
calculations through third-order used 450 kilobytes of storage and 5m 6s of CPU 
time on the IBM 370/165 computer at the Daresbury Laboratory. 

The pair energies obtained in the present study are compared with those of Rosen- 
berg and Shavitt [12] (configuration interaction) and with those of Meyer [21] 
(independent pair approximation) in Table 2. The present perturbation pair 
energies are in general much closer in agreement with the configuration interaction 
pair energies than with the independent pair approximation. This is particularly 
true of the model expansion. Of course it should be remembered that the calcula- 
tions of Meyer [21] employed a different basis set than the remaining results in 
Table 2. 

The fourth-order energy terms arising from quadruply-excited states in the model 
scheme are given in Table 3. The total linked and unlinked energy contribution 
corresponding to all diagrams in Figs. 1 and 2 is negative definite. However, the 
unlinked terms cancel against another term in the perturbative expansion:-E2Sll ,  
where $1~ is the self-overlap or normalization integral over the first-order wave- 
function. Thus, the residual total contribution consists of the linked diagram total. 
The individual diagrammatic components of the linked energy are both positive 
and negative and thereby partially cancel giving a small positive total. The evalua- 
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Table 2. Electron pair energies for the water molecule from configuration interaction, inde- 
pendent pair approximation, many-body perturbation calculations a. I: From the configuration 
interaction calculation of Rosenberg and Shavitt [12], II: From the independent pair approxi- 
mation calculation of Meyer [21 ], III: Present work: "Model" perturbation expansion through 
third-order, IV: Present work: "Shifted" perturbation expansion through third-order 

I II III IV 

la~ 0.0315 0.0390 0.0314 0.0315 
lai2al 0.0036 0.0039 0.0036 0.0037 
2a~ 0.0114 0.0122 0.0111 0.0113 
lallb2 0.0025 0.0035 0.0025 0.0025 
2allb2 0.0244 0.0275 0.0251 0.0260 
lb~ 0.0256 0.0264 0.0246 0.0254 
la13ai 0.0033 0.0045 0.0033 0.0034 
2a13al 0.0217 0.0248 0.0221 0.0230 
lb~3al 0.0428 0.0434 0.0444 0.0471 
3a~ 0.0251 0.0267 0.0240 0.0250 
lallbt 0.0035 0.0051 0.0036 0.0036 
2allbl 0.0227 0.0268 0.0232 0.0242 
lb21bl 0.0405 0.0415 0.0423 0.0450 
3a~lb~ 0.0434 0.0452 0.0454 0.0483 
lb~ 0.0252 0.0267 0.0243 0.0252 
"Sum of pairs" energy 0.327362 0.358019 0.330965 0.345071 

a In Hartree. 

Energy a 

Linked diagrams 
E~(Ao) - 0.00714 
E4(Bo + Co) -0.00102 
E~(Do + Eo) +0.00351 
E~(Fo + Go) +0.00786 

Total (linked) + 0.00321 
Unlinked diagrams 

E2Sll - 0.01711 
Total (linked and unlinked) -0.01391 

Table 3. Components of the correlation 
energy of the water molecule correspond- 
ing to fourth-order diagrams involving 
quadruply-excited states 

ain Hartree: these energy quantities 
correspond to the "model" perturbation 
expansion. 

t ion of the l inked fourth-order  terms required 232 kilobytes of storage and 2m 33s 
of C P U  time on the IBM 370/165 computer .  

In  Table  4, the various energy quanti t ies which may be derived from the results of 
Rosenberg  and Shavitt  [12] are given, corresponding to Eqs. (3) and (4). The last 
line in Table 4 represents an ad hoc addit ion of the extrapolated l inked diagram 
energy associated with singly- and doubly-excited states plus the fourth-order  
l inked diagram cont r ibut ion  arising from quadruply  excited states. 
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Table 4. Energy quantities for the water 
molecule derived from the configuration 
interaction calculation of Rosenberg and 
Shavitt [121 

In Hartree. 

Energy ~ 

ESD -- 0.27558 

Co + 0.97242 

1 - C o  ~ C~ ESD --0.01585 

1 
C--~o EsD -- 0.29143 

1 
C"-~o EsD + E4(AQ + . . .  + GQ) --0.28822 

4. D i scuss ion  

The model  pe r tu rba t ion  expansion based on the use of  the H a r t r e e - F o c k  ope ra to r  
as a reference Hami l ton ian  appears  to be more  rapid ly  convergent  on the basis of  
a cr i ter ion of  E3/E2 than the shifted pe r tu rba t ion  expans ion  in the present  study. 
This conclusion is consis tent  with the ear l ier  results on water  [7] and  therefore  the 
to ta l  energies compi led  in Table  5 contain  the model  results and  the var ious  con- 
f igurat ion in terac t ion  results for compar ison.  The  infinite o rder  sum of  all l inked 
diagrams,  EsD (l inked),  involving singly- and  doubly-exci ted  configurat ions  is 
lower than  the th i rd-order  energy obta ined  f rom the model  pe r tu rba t ion  expansion 
by - 0 . 0 0 6 4  Har t rees ,  or 2.2% of  the th i rd-order  result.  On the o ther  hand,  the 
th i rd -order  result  ar is ing f rom the shifted pe r tu rba t ion  expansion differs f rom the 
infinite o rder  result  by -0 .0201  Har t ree ,  or 7.5%. The fo rmat ion  o f  Pad6 approxi -  
mants  brings the results ob ta ined  f rom the two pe r tu rba t ion  series to within 1.2% 
of  each other.  

The l inked d iagrams involving quadruply-exci ted  states that  arise in four th -order  
are  found to cont r ibute  +0.0032 Har t ree  in the case o f  the water  molecule.  How-  
ever, the four th -o rder  l inked d iagram cont r ibu t ion  arising f r o m  doubly-exci ted  

Table 5. Non-relativistic energies for the water molecule a 

Total energy Correlation energy 

Erer - 76.064226 
Eref + E2 + Ea -76.3493 -0.2850 
Pad6 approximant - 76.3493 - 0.2850 
Perturbative upper bound - 76.3335 - 0.2693 
Eso --76.3398 -0.2756 
EsD (linked) - 76.3557 - 0.2914 
EsD (linked) + E4Q (linked) - 76.3524 - 0.2882 
Non-relativistic, clamped nuclei energy -76.4376 + 0.0024 -0.370 + 0.003 

a In Hartree. 
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states has been found [13] to be -0 .00432  Hartree.  Thus again a cancellation o f  
diagrammatic  energy contributions within a given order  o f  the perturbat ion 
expansion is apparent.  The net calculated fourth-order  energy from doubly- and 
quadruply-excited states is -0 .0011  Hartree.  Clearly, the inclusion of  diagrams 
involving doubly-excited configurations beyond third-order is not  justified unless 
the quadruply-excited functions are also included, and vice versa. Since singly- and 
triply-excited states also enter the perturbat ion expansion at fourth-order,  it would 
be equally inconsistent to omit either o f  these contributions in a fourth-order  
calculation o f  the energy. 

A natural  question to pose is to what  order  of  the perturbat ion expansion should 
a calculation be performed. A third-order  calculation is quite efficient and econo- 
mical [14], and using the model  per turbat ion scheme, the third-order results appear  
to be within a few per cent o f  the infinite order results and give good indication o f  
convergence [7]. A full fourth-order  calculation is far more  difficult and at best 
might recover several millihartree o f  energy. F rom Table 5, the limitation imposed 
by the size and quality o f  the given 39 orbital basis set is about  - 0 . 0 9  Hartree.  
Thus it might be more  reasonable to improve the basis set and retain the third- 
order  level o f  per turbat ion theory rather than pursue the small additional residue 
coming f rom fourth-  and higher-order terms. 
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Note added in proof 
The contribution of triply-excited states to the correlation energy of the water molecule has 
recently been examined [22] and the full fourth-order energy discussed. 


